
Title: Infrastructure via AI-Driven Orchestration: A New Model for Cloud Automation

Author: [Your Name]\ Date: [Date]

Executive Summary

Traditional Infrastructure as Code (IaC) has long served as the backbone of scalable, repeatable
infrastructure deployment in the cloud. However, the emergence of AI-assisted orchestration introduces a
new paradigm: infrastructure driven by rule-based AI agents, embedding domain knowledge, and executing
actions via imperative APIs such as AWS CLI. This paper outlines how AI-driven orchestration—distinct from
IaC by definition—can serve as a deterministic, repeatable, and intelligent alternative for managing public
cloud infrastructure. We focus on Amazon Q Developer, vector databases, structured prompts, and
managed AI workflows.

This new approach is best described as Intent-Driven Infrastructure Execution—an operational model
where desired outcomes are translated into infrastructure actions dynamically and intelligently.

1. Introduction

Traditional IaC: Declarative, file-based, version-controlled (e.g., Terraform, Bicep)
AI-Driven Orchestration: Dynamic, knowledge-based, execution via structured outputs and APIs
(e.g., AWS CLI)
Use Case: Enterprise cloud teams looking to automate infrastructure provisioning without managing
IaC files

2. Conceptual Architecture

Core Components:

LLM Agent (e.g., Amazon Q Developer)
Vector Database (e.g., Amazon OpenSearch, Pinecone)
Prompt Management Layer (templates + rules)
Execution Engine (AWS CLI via Lambda/Fargate/API Gateway)
Monitoring & Audit Layer (CloudWatch, Athena logs)

Data Flow:

User expresses intent (natural language or structured query)
LLM uses vector search to retrieve compliant infrastructure patterns
Structured prompt and output template generates CLI calls
Execution engine runs commands
Monitoring layer verifies and logs output

•
•

•

1.
2.
3.
4.
5.

1.
2.
3.
4.
5.

1

Intent-Driven Infrastructure Execution Diagram

+-------------------+ +----------------------+

+----------------------+ +------------------------+

| User/Developer | --> | LLM Agent (Q Dev) | --> | Prompt + Vector

DB | --> | Execution Engine |

| (Express Intent) | | (Interpret & Plan) | | (Best Practice

Match)| | (AWS CLI + Runtime) |

+-------------------+ +----------------------+

+----------------------+ +------------------------+

|

v

+--------------------+

| Cloud Environment |

+--------------------+

3. Tools and Setup

3.1 Amazon Q Developer

Use for prompt chaining, task planning, and context retention
Integrated with AWS Developer Tools (CodeWhisperer, CLI, SDKs)

3.2 Vector Database

Use OpenSearch Service or external options like Pinecone
Store embeddings of best-practice infrastructure definitions

3.3 Structured Prompting

Use templates like:

{

"intent": "create s3 bucket",

"compliance": "private, encrypted",

•
•

•
•

•

2

"region": "us-west-2"

}

Map output format to specific CLI commands

3.4 CLI Executor

AWS Lambda or Step Functions to run CLI commands
Guardrails via IAM roles and runtime verifications

4. Implementation Steps

Step 1: Define Knowledge Base

Convert best practices into vector-encoded formats
Include compliance, architecture patterns, naming conventions

Step 2: Build Prompt-Output Chain

Develop templates that enforce output structure (JSON → CLI)
Use Amazon Q Developer’s coding agent features to generate syntax

Step 3: Create Execution Backend

Lambda functions (or Fargate tasks) to run CLI commands
Secure API Gateway to trigger executions with logs

Step 4: Live State Awareness ("As Built" Detection)

Use the LLM to query live infrastructure state via MCP servers
Determine whether requested resources already exist
Calculate and execute only the required changes to reach desired state

5. Benefits Over Traditional IaC

Feature AI-Driven Orchestration Traditional IaC

Codebase Dependency Low High

Speed of Iteration High Medium

Context Awareness Dynamic via LLM Static

Integration Flexibility High (API/SDK driven) Moderate

State Awareness Real-time via MCP File-based (via state files)

•

•
•

•
•

•
•

•
•

•
•
•

3

6. Limitations & Considerations

Auditability: Must log input/output and execution
Security: Execution engine must be tightly scoped
Versioning: Vector knowledge base must be curated

7. Future Outlook

AI-driven orchestration has the potential to replace IaC entirely in environments where live state detection
and structured execution via AI are the norm. By enabling "as built" detection through MCP integrations,
the need for separate drift detection is eliminated. This approach is particularly viable in dynamic, event-
driven, or developer-centric workflows where speed, flexibility, and context are prioritized.

8. Conclusion

AI-driven infrastructure orchestration using tools like Amazon Q Developer, vector DBs, and CLI automation
represents a real evolution in cloud operations. While it does not meet the strict definition of Infrastructure
as Code, it enables an equally rigorous and intelligent alternative when engineered properly. Teams
leveraging "as built" detection through LLMs and MCP servers may find this model not just an
augmentation—but a full replacement. This marks the rise of Intent-Driven Infrastructure Execution.

Appendix A: Example Prompt-Output Pair

Input Prompt: "Create a private, encrypted S3 bucket in us-east-1 with logging enabled."

Structured Output:

{

"cli": "aws s3api create-bucket --bucket my-secure-bucket --region us-east-1

--create-bucket-configuration LocationConstraint=us-east-1",

"policy": "private",

"encryption": "AES256",

"logging": true

}

Execution: AWS Lambda receives JSON, runs CLI, logs result.

End of Document

•
•
•

4

	Executive Summary
	1. Introduction
	2. Conceptual Architecture
	Intent-Driven Infrastructure Execution Diagram

	3. Tools and Setup
	3.1 Amazon Q Developer
	3.2 Vector Database
	3.3 Structured Prompting
	3.4 CLI Executor

	4. Implementation Steps
	Step 1: Define Knowledge Base
	Step 2: Build Prompt-Output Chain
	Step 3: Create Execution Backend
	Step 4: Live State Awareness ("As Built" Detection)

	5. Benefits Over Traditional IaC
	6. Limitations & Considerations
	7. Future Outlook
	8. Conclusion

